Convex Sets and Concave Functions

Ping Yu

Department of Economics
University of Hong Kong
Convex Sets

Concave Functions
- Basics
- The Uniqueness Theorem
- Quasiconvex Functions
- Sufficient Conditions for Optimization

Second Order Conditions for Optimization
Overview of This Chapter

- We will show uniqueness of the optimizer and sufficient conditions for optimization through convexity.

- To study convex functions, we need to first define convex sets.
Convex Sets
Convex Combination, Interval and Convex Set

- Given two points \(\mathbf{x}, \mathbf{y} \in \mathbb{R}^n \), a point \(\mathbf{z} = a\mathbf{x} + (1 - a)\mathbf{y} \), where \(0 \leq a \leq 1 \), is called a convex combination of \(\mathbf{x} \) and \(\mathbf{y} \).

- The set of all possible convex combinations of \(\mathbf{x} \) and \(\mathbf{y} \), denoted by \([\mathbf{x}, \mathbf{y}]\), is called the interval with endpoints \(\mathbf{x} \) and \(\mathbf{y} \) (or, the line segment connecting \(\mathbf{x} \) and \(\mathbf{y} \)), i.e.,

\[
[\mathbf{x}, \mathbf{y}] = \{a\mathbf{x} + (1 - a)\mathbf{y} \mid 0 \leq a \leq 1\}.
\]

- This definition is an extension of the interval in \(\mathbb{R}^1 \).

Definition

A set \(S \subseteq \mathbb{R}^n \) is convex iff for any points \(\mathbf{x} \) and \(\mathbf{y} \) in \(S \) the interval \([\mathbf{x}, \mathbf{y}] \subseteq S\). [Figure here]

- A set is convex if it contains the line segment connecting any two of its points; or
- A set is convex if for any two points in the set it also contains all points between them.
Examples of Convex and Non-Convex Sets

- Convex sets in \mathbb{R}^2 include interiors of triangles, squares, circles, ellipses, and hosts of other sets.
- The quintessential convex set in Euclidean space \mathbb{R}^n for any $n > 1$ is the n-dimensional open ball $B_r(a)$ of radius $r > 0$ about point $a \in \mathbb{R}^n$, where recall from Chapter 1 that
 \[B_r(a) = \{ x \in \mathbb{R}^n \mid \| x - a \| < r \}. \]
- In \mathbb{R}^3, while the interior of a cube is a convex set, its boundary is not. (Of course, the same is true of the square in \mathbb{R}^2.)
Example

Prove that the budget constraint \(B = \{ x \in X : p'x \leq y \} \) is convex.

Proof.

For any two points \(x_1, x_2 \in B \), we have

\[
p'x_1 \leq y \quad \text{and} \quad p'x_2 \leq y.
\]

Then for any \(t \in [0, 1] \), we must have

\[
p'[tx_1 + (1 - t)x_2] = t(p'x_1) + (1 - t)(p'x_2) \leq y.
\]

This is equivalent to say that \(tx_1 + (1 - t)x_2 \in B \). So the budget constraint \(B \) is convex.
Concave Functions
Concave and Convex Functions

- For uniqueness, we need to know something about the shape or **curvature** of the functions f and (g, h).

- A function $f : S \rightarrow \mathbb{R}$ defined on a convex set S is **concave** if for any $x, x' \in S$ with $x \neq x'$ and for any t such that $0 < t < 1$ we have

 \[f(tx + (1-t)x') \geq tf(x) + (1-t)f(x') \]

 The function is **strictly concave** if

 \[f(tx + (1-t)x') > tf(x) + (1-t)f(x') \]

- A function $f : S \rightarrow \mathbb{R}$ defined on a convex set S is **convex** if for any $x, x' \in S$ with $x \neq x'$ and for any t such that $0 < t < 1$ we have

 \[f(tx + (1-t)x') \leq tf(x) + (1-t)f(x') \]

 The function is **strictly convex** if

 \[f(tx + (1-t)x') < tf(x) + (1-t)f(x') \]

- Why don’t we check $t = 0$ and 1 in the definition? Why the domain of f must be a convex set? (**Exercise**)

- The negative of a (strictly) convex function is (strictly) concave. (**why?**)

- There are both concave and convex functions, but only convex sets, no concave sets!
A function is concave if the value of the function at the average of two points is less than the average of the values of the function at the two points.

Figure: Concave Function
A function is convex if the value of the function at the average is less than the average of the values.
Alternative Definition of Concave and Convex Functions

- Define the subgraph and epigraph of f, denoted as $\text{sub}(f)$ and $\text{epi}(f)$:

 $$\text{sub}(f) = \{(x, y) \in S \times \mathbb{R} | f(x) \geq y\} \subset \mathbb{R}^{n+1},$$

 $$\text{epi}(f) = \{(x, y) \in S \times \mathbb{R} | f(x) \leq y\} \subset \mathbb{R}^{n+1}.$$

- A function f is concave iff $\text{sub}(f)$ is a convex set, and is convex iff $\text{epi}(f)$ is convex.

Figure: Epigraph and Subgraph
Concave Functions

Basics

Calculus Criteria for Concavity and Convexity

Theorem

Let $f \in C^2(U)$, where $U \subset \mathbb{R}^n$ is open and convex. Then f is concave iff the Hessian

$$D^2f(x) = \begin{pmatrix}
\frac{\partial^2 f(x)}{\partial x_1^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\
\vdots & \ddots & \vdots \\
\frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2}
\end{pmatrix}$$

is negative semidefinite for all $x \in U$. If $D^2f(x)$ is negative definite for all $x \in U$, then f is strictly concave on U. Conditions for convexity are obtained by replacing "negative" by "positive".

- The conditions for strict concavity in the theorem are only sufficient, not necessary.
 - if $D^2f(x)$ is not negative semidefinite for all $x \in U$, then f is not concave;
 - if $D^2f(x)$ is not negative definite for all $x \in U$, then f may or may not be strictly concave (see the example below).

- Notations: For a matrix A, $A > 0$ means it is positive definite, $A \geq 0$ means it is positive semidefinite. Similarly for $A < 0$ and $A \leq 0$.

Ping Yu (HKU)
Positive (Negative) Definiteness of A Matrix

- An \(n \times n \) matrix \(H \) is **positive definite** iff \(v'Hv > 0 \) for all \(v \neq 0 \) in \(\mathbb{R}^n \); \(H \) is **negative definite** iff \(v'Hv < 0 \) for all \(v \neq 0 \) in \(\mathbb{R}^n \).

- Replacing the strict inequalities above by weak ones yields the definitions of **positive semidefinite** and **negative semidefinite**.
 - Usually, positive (negative) definiteness is only defined for a symmetric matrix, so we restrict our discussions on **symmetric** matrices below. Fortunately, the Hessian is symmetric by Young’s theorem.

- The positive definite matrix is an extension of the positive number. To see why, note that for any positive number \(H \), and any real number \(v \neq 0 \), \(v'Hv = v^2 H > 0 \). Similarly, the positive semidefinite matrix, negative definite matrix, negative semidefinite matrix are extensions of the nonnegative number, negative number and nonpositive number, respectively.

- The diagonal elements of a positive definite matrix must be positive, while the off-diagonal elements need not be. [Exercise]
Identifying Definiteness and Semidefiniteness

- For an $n \times n$ matrix H, a $k \times k$ submatrix formed by picking out k columns and the same k rows is called a kth order principal submatrix of H; the determinant of a kth order principal submatrix is called a kth order principal minor.

- The $k \times k$ submatrix formed by picking out the first k columns and the first k rows is called a kth order leading principal submatrix of H; its determinant is called the kth order leading principal minor.

- A matrix is positive definite iff its n leading principal minors are all > 0.
- A matrix is negative definite iff its n leading principal minors alternate in sign with the odd order ones being < 0 and the even order ones being > 0.
- A matrix is positive semidefinite iff its $2^n - 1$ principal minors are all ≥ 0.
- A matrix is negative semidefinite iff its $2^n - 1$ principal minors alternate in sign so that the odd order ones are ≤ 0 and the even order ones are ≥ 0.
Examples

- A linear function $f(x) = a_1x_1 + \cdots + a_nx_n$ is both concave and convex.
- $f(x) = -x^4$ is strictly concave, but its Hessian is not negative definite for all $x \in \mathbb{R}$ since $D^2f(0) = 0$.
- The particular Cobb-Douglas utility function $u(x_1, x_2) = \sqrt{x_1}\sqrt{x_2}$, $(x_1, x_2) \in \mathbb{R}_+^2$, is concave but not strictly concave. First check that it is concave.

$$D^2 f(x) = \begin{pmatrix}
\frac{1}{2} \left(-\frac{1}{2} \right) \frac{\sqrt{x_2}}{\sqrt{x_1}} & \frac{1}{2} \frac{1}{\sqrt{x_1}\sqrt{x_2}} \\
\frac{1}{2} \frac{1}{\sqrt{x_1}\sqrt{x_2}} & \frac{1}{2} \left(-\frac{1}{2} \right) \frac{\sqrt{x_1}}{\sqrt{x_2}}
\end{pmatrix}.$$

Since
$$\frac{1}{2} \left(-\frac{1}{2} \right) \frac{\sqrt{x_2}}{\sqrt{x_1}} \leq 0, \quad \frac{1}{2} \left(-\frac{1}{2} \right) \frac{\sqrt{x_1}}{\sqrt{x_2}} \leq 0$$

and
$$\left(\frac{1}{2} \left(-\frac{1}{2} \right) \frac{\sqrt{x_2}}{\sqrt{x_1}} \right) \left(\frac{1}{2} \left(-\frac{1}{2} \right) \frac{\sqrt{x_1}}{\sqrt{x_2}} \right) - \left(\frac{1}{2} \frac{1}{\sqrt{x_1}\sqrt{x_2}} \right)^2 = 0$$

for $(x_1, x_2) \in \mathbb{R}_+^2$, $u(x_1, x_2)$ is concave.

- Let $x_2 = x_2' = 0, x_1 \neq x_1'$; then $u(tx_1 + (1-t)x_1', 0) = 0 = tu(x_1, 0) + (1-t)u(x_1', 0)$, so $u(x_1, x_2)$ is not strictly concave.
Local Maximum is Global Maximum

Consider the mixed constrained maximization problem, i.e.,

$$\max_x f(x) \text{ s.t. } x \in G \equiv \{ x \in \mathbb{R}^n | g(x) \geq 0, h(x) = 0 \}.$$

Theorem

If f is concave, and the feasible set G is convex, then

(i) Any local maximum of f is a global maximum of f.

(ii) The set $\arg \max \{ f(x) | x \in G \}$ is convex.

In concave optimization problems, all local optima must also be global optima; therefore, to find a global optimum, it always suffices to locate a local optimum.
The Uniqueness Theorem

Theorem

If f is strictly concave, and the feasible set G is convex, then the maximizer x^* is unique.

Proof.

Suppose f has two maximizers, say, x and x'; then $tx + (1 - t)x' \in G$, and by the definition of strict concavity, for $0 < t < 1$,

$$f(tx + (1 - t)x') > tf(x) + (1 - t)f(x') = f(x) = f(x').$$

A contradiction.

- If a strictly concave optimization problem admits a solution, the solution must be unique. So finding one solution is enough.
Example: Consumer’s Problem - Revisited

- Does the consumer’s problem
 \[
 \max_{x_1, x_2} \sqrt{x_1} \sqrt{x_2} \text{ s.t. } x_1 + x_2 \leq 1, \ x_1 \geq 0, \ x_2 \geq 0
 \]
 have a solution? Is the solution unique?

- The feasible set \(G = \{x_1 + x_2 \leq 1, \ x_1 \geq 0, \ x_2 \geq 0\} \) is compact (why?) and \(\sqrt{x_1} \sqrt{x_2} \) is continuous, so by the Weierstrass Theorem, there exists a solution.

- The solution is unique, \((x_1^*, x_2^*) = \left(\frac{1}{2}, \frac{1}{2}\right)\). But from the discussion above, \(\sqrt{x_1} \sqrt{x_2} \) is not strictly concave for \((x_1, x_2) \in \mathbb{R}_+^2\). Actually, even if we restrict \((x_1, x_2) \in \mathbb{R}_+^2\), where \(\mathbb{R}_+^2 \equiv \{x|x > 0\}, \sqrt{x_1} \sqrt{x_2} \) is NOT strictly concave. Check for \(t \in (0, 1), x_1 \neq x'_1 \) and/or \(x_2 \neq x'_2 \),
 \[
 \sqrt{tx_1 + (1 - t)x'_1} \sqrt{tx_2 + (1 - t)x'_2} \geq t \sqrt{x_1 x_2} + (1 - t) \sqrt{x'_1 x'_2}
 \]
 \(\iff\) \((tx_1 + (1 - t)x'_1) (tx_2 + (1 - t)x'_2) \geq \left(t \sqrt{x_1 x_2} + (1 - t) \sqrt{x'_1 x'_2}\right)^2 \)
 \(\iff\) \(x_1 x'_2 + x'_1 x_2 \geq 2 \sqrt{x_1 x_2 x'_1 x'_2} \iff \left(\sqrt{x_1 x'_2} - \sqrt{x'_1 x_2}\right)^2 \geq 0 \)

 with equality holding when \(x_2 / x_1 = x'_2 / x'_1 \) (what does this mean?).

- In summary, the theorem provides only sufficient (but not necessary) conditions.
Quasiconvex and Quasiconcave Functions

- **Problem**: how to guarantee that G is convex?

- A function $f : S \rightarrow \mathbb{R}$ defined on a convex set S is **quasiconvex** if for any $a \in \mathbb{R}$, the lower contour set $\{x|f(x) \leq a\}$ is convex. The negative of a quasiconvex function is said to be **quasiconcave** or its upper contour sets are convex.

- An alternative definition of quasiconvexity/quasiconcavity: A function $f : S \rightarrow \mathbb{R}$ defined on a convex set S is **quasiconvex** if for all $x, y \in S$ and $t \in (0, 1)$ we have

 $$f(tx + (1-t)y) \leq \max \{f(x), f(y)\};$$

 a function f is **quasiconcave** if

 $$f(tx + (1-t)y) \geq \min \{f(x), f(y)\}.$$

- Replacing the equality by strict equality, we get the strictly quasiconvex/quasiconcave function.
A convex function must be a quasiconvex function (why?), but the inverse is not correct.
A function is both concave and convex iff it is linear (or, more properly, affine), taking the form \(f(x) = a + b'x \) for some constants \(a \) and \(b \).

A function that is both quasiconvex and quasiconcave is called quasilinear.
- Any monotone function on \(\mathbb{R} \) is quasilinear, and any affine function is quasilinear. For a quasilinear function \(f \), \(\{x | f(x) = c\} \) for any constant \(c \) is convex.

There are many alternative conditions to ensure \(G \) to be convex. One popular set of conditions is that \(g_j, j = 1, \ldots, J \), is quasiconcave, and \(h_k, k = 1, \ldots, K \), is quasilinear.

For example, in the consumer’s problem above, \(g_1(x) = x_1 \), \(g_2(x) = x_2 \) and \(g_3(x) = 1 - x_1 - x_2 \) are all affine, so \(G \) is convex.
Theorem (Theorem of Kuhn-Tucker under Convexity)

Suppose \(f, g_j \) and \(h_k, j = 1, \ldots, J, k = 1, \ldots, K \), are all \(C^1 \) functions, \(f \) is concave, \(g_j \) is quasiconcave, and \(h_k \) is quasilinear. If there exists \((\lambda^*, \mu^*)\) such that \((x^*, \lambda^*, \mu^*)\) satisfies the Kuhn-Tucker conditions, then \(x^* \) solves the mixed constrained maximization problem.

- In practice, check whether \(g_j \) is concave, and \(h_k \) is affine.
Second Order Conditions for Optimization
In the LN, we use the "bordered Hessians" to check a solution to the FOCs is a local maximizer or a local minimizer.

In practice, this may be quite burdensome.

As an easy (although less general) alternative, we can employ the concavity of the objective function f to draw the conclusion.

- if f is strictly concave at x^*, i.e., if $D^2 f(x^*) < 0$, then x^* is a strict local maximizer.
- if f is strictly convex at x^*, i.e., if $D^2 f(x^*) > 0$, then x^* is a strict local minimizer.