Maximum Likelihood Estimation for the Proportional Odds Model With Random Effects

Donglin Zenga, D. Y Lina & Guosheng Yina

a Donglin Zeng is Assistant Professor and D. Y. Lin is Dennis Gillings Distinguished Professor, Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599. Guosheng Yin is Assistant Professor, Department of Biostatistics, M. D. Anderson Cancer Center, Houston, TX 77030. This research was supported by the National Institutes of Health.

Published online: 01 Jan 2012.
Maximum Likelihood Estimation for the Proportional Odds Model With Random Effects

Donglin ZENG, D. Y. LIN, and Guosheng YIN

In this article we study the semiparametric proportional odds model with random effects for correlated, right-censored failure time data. We establish that the maximum likelihood estimators for the parameters of this model are consistent and asymptotically Gaussian. Furthermore, the limiting variances achieve the semiparametric efficiency bounds and can be consistently estimated. Simulation studies show that the asymptotic approximations are accurate for practical sample sizes and that the efficiency gains of the proposed estimators over those of Cai, Cheng, and Wei can be substantial. A real example is provided to illustrate the proposed methods.

KEY WORDS: Correlated failure time data; Frailty model; Linear transformation model; Proportional hazards; Semiparametric efficiency; Survival data.

1. INTRODUCTION

In many scientific studies, there exists natural or artificial clustering of study subjects such that the survival times or failure times of the subjects within the same cluster are correlated. A common approach to accommodating the intraclass dependence is to incorporate an unobserved random effect, the so-called frailty, into the Cox (1972) proportional hazards model. Specifically, the hazard function for the \(j \)th subject of the \(t \)th cluster associated with a \(d_1 \)-vector of covariates \(X_{ij} \) is postulated to take the form

\[
\lambda(t|X_{ij}, \xi_j) = \lambda_0(t)e^{X_{ij}^T \alpha}, \quad i = 1, \ldots, n; j = 1, \ldots, n_t, \tag{1}
\]

where \(\lambda_0(\cdot) \) is an unspecified baseline hazard function, \(\alpha \) is a vector of unknown regression parameters, and \(\xi_j \) is the unobserved frailty for the \(t \)th cluster. Although various parametric distributions for the frailty have been suggested, the existing literature has been focused on the simple case of gamma frailty. The consistency and asymptotic distribution of the maximum likelihood estimator for the gamma frailty model have been rigorously studied by Murphy (1994, 1995) for the case with no covariates and by Parner (1998) for the case with covariates.

Model (1) imposes a common gamma frailty on all members of the same cluster. Several authors have extended this shared gamma frailty model to accommodate more flexible dependence among cluster members. In particular, Petersen (1998) allowed different additive frailties for different members of the same cluster. Parner (1998) assumed that the frailty for each cluster consists of two independent components, a common cluster-level effect and a subject-specific effect, and showed that the maximum likelihood estimator is efficient.

Under model (1), the conditional hazard functions given frailties are required to be proportionate over time among different sets of covariate values. This assumption of proportional hazards may not be satisfied in certain applications. For independent failure time data, an attractive alternative to the proportional hazards model is the proportional odds model (Pettitt 1984; Bennett 1983). The proportional odds model constrains the ratio of the odds of survival associated with two sets of covariate values to be constant over time, and, consequently, the ratio of the hazards to converge to unity as time increases. In contrast, the proportional hazards model constrains the hazard ratio to be constant while the odds ratio tends to 0 or infinity. Physical and biological rationale behind the proportional odds model was provided by Bennett (1983) and others. Statistical inference is much more challenging under the proportional odds model than under the proportional hazards model. Important contributions have been made by Bennett (1983), Pettitt (1984), Cuzick (1988), Dabrowska and Doksum (1988), Cheng, Wei, and Ying (1995), Wu (1995), Murphy, Rossini, and van der Vaart (1997), Shen (1998), Lam and Leung (2001), and Chen, Jin, and Ying (2002), among others.

In this article we consider the proportional odds model with random effects for correlated failure time data. Specifically,

\[
-\logit(S(t|X_{ij}, Z_{ij}, b_i)) = G(t) + X_{ij}^T \beta + Z_{ij}^T b_i, \quad i = 1, \ldots, n; j = 1, \ldots, n_t, \tag{2}
\]

where \(X_{ij} \) is a \(d_1 \)-vector of covariates as defined earlier, \(Z_{ij} \) is a \(d_2 \)-vector of covariates that usually contains 1 and part of \(X_{ij} \), \(G(\cdot) \) is an unspecified strictly increasing function, \(\beta \) is a set of unknown regression parameters, \(b_i \) is a set of unobserved random effects, and \(S(t|X_{ij}, Z_{ij}, b_i) \) is the survival function conditional on \(X_{ij} \) and \(Z_{ij} \) and \(b_i \). We assume that \(b_i \) follows a normal distribution with mean 0 and unknown covariance matrix \(\Sigma \). Note that model (2) allows covariate-specific or subject-specific random effects, whereas model (1) only allows a cluster-specific frailty.

Two recent articles are concerned with special versions of model (2). Specifically, Cai, Cheng, and Wei (2002) studied model (2) with a scalar random effect (i.e., \(Z_{ij} \equiv 1 \)). The parameter estimators are obtained by minimizing the empirical sum of squares of the differences between certain observed quantities and their expected values. The estimators are not asymptotically efficient, and the variance estimation is computationally demanding. The censoring mechanism is required to be purely random and independent of covariates. Lam, Lee, and Leung (2002) considered the proportional odds model with scalar random effects \(\mu_{ij}, i = 1, \ldots, n; j = 1, \ldots, n_t \). Within the \(t \)th cluster, \(\mu_{ij} \), \(j = 1, \ldots, n_t \), are multivariate normal with a specific covariance structure. Lam et al. (2002) obtained the estimators for the regression parameters by maximizing a marginal likelihood based on the ranks of the failure times. They did not
provide formal asymptotic results or consider the problem of survival function estimation.

In this article we study the maximum likelihood estimation of model (2). The estimators are shown to be consistent and asymptotically efficient. The asymptotic distributions of the estimators and consistent variance estimators are also obtained. Numerical studies reveal that the proposed estimators perform well for practical sample sizes and that the efficiency gains over the estimators of Cai et al. (2002) can be substantial.

We describe in greater detail the data structure and model assumptions in the next section, and develop the estimation theory in Section 3. We then present the results of our numerical studies in Section 4 and provide an application to a real medical study in Section 5. We give some concluding remarks in Section 6. Most of the technical details are relegated to the Appendix.

2. DATA STRUCTURE AND MODEL ASSUMPTIONS

Suppose that there is a random sample of n clusters with potentially different sizes. For i = 1, . . . , n and j = 1, . . . , ni, let Tij and Cij be the latent failure time and censoring time for the jth member of the ith cluster and let Xij and Zij be the corresponding d1- and d2-vectors of covariates. The regression relationship between Tij and (Xij, Zij) is given by model (2). The data consist of (Yij, Δij, Xij, Zij) (i = 1, . . . , n; j = 1, . . . , ni), where Yij = Tij ∧ Cij, Δij = 1(Tij ≤ Cij), and Cij = Cij ∧ τ. Here and in the sequel, a ∧ b = min(a, b), a ∨ b = max(a, b), I(·) is the indicator function, and τ is a fixed constant denoting the end of the study.

We impose the following regularity conditions:

C1. Conditional on covariates Xij and Zij, the censoring time Cij is independent of the failure time Tij and random effects bij.

C2. There exists some positive constant δ0 such that Pr(Cij ≥ τ|Xij, Zij) ≥ δ0 almost surely.

C3. All of the Xij and Zij are bounded. In addition, if there exist a constant vector c and a symmetric matrix Σ such that

\[[1, X_{ij}^T]c + Z_{ij}^TΣZ_{ij} = 0, \quad j = 1, . . . , ni \]

and

\[Z_{ij}'ΣZ_{ij} = 0, \quad j ≠ j', j, j' = 1, . . . , ni \]

almost surely, then c = 0 and Σ = 0.

C4. The true value G0(t) of G(t) is a strictly increasing function in [0, τ] and is continuously differentiable. In addition, G0(t) = −∞, dG0(t)/dt|t=τ > 0, and G0(τ) < ∞.

C5. The true values of β and Σ, β0 and Σ0, belong to the interior of a known compact set,

\[Θ = \{ (β, Σ) : |β| ≤ B for some constant B, Σ is positive definite and its eigenvalues are bounded away from 0 and ∞ \}. \]

C6. The cluster size is completely random. In addition, there exists a positive integer n0 such that 1 ≤ ni ≤ n0 and Pr(ni ≥ 2) > 0.

Remark 1. Conditions C3, C4, and C6 ensure the identifiability of the parameters in model (2). If Zij = Zij in condition C3 for continuous covariates, then the two displays in this condition are equivalent to the linear independence of \([1, X_{ij}^T]\) and the linear independence of Zij. In condition C4, the equality G0(0) = −∞ follows from the fact that \(S(0)X_{ij}, Z_{ij}, b_i) = 1\), and the inequality G0(τ) < ∞ implies that \(Pr(T_{ij} > τ|X_{ij}, Z_{ij}, b_i) > 0\). The bound G0(τ) is unknown in practice. Condition C6 implies that the cluster size is bounded and some clusters have at least two subjects.
where the inequality follows from the boundedness of X_{ij} and Z_{ij} and the compactness of Θ. Second, for any H, we can always construct a new increasing function H^*, which is a step function with jumps only at the Y_{ij} for which $\Delta_{ij} = 1$ such that $H^*(Y_{ij}) = H(Y_{ij})$. Clearly, $H^*(Y_{ij}) \geq H(Y_{ij})$ for $\Delta_{ij} = 1$, so that $L_n(\hat{\beta}, \Sigma, H^*) \geq L_n(\hat{\beta}, \Sigma, H)$. This implies that the function H that maximizes $L_n(\hat{\beta}, \Sigma, H)$ should be a step function with positive jumps only at the Y_{ij} for which $\Delta_{ij} = 1$. Third, if $H(Y_{ij}) = \infty$ for some Y_{ij}, then it is easy to see that $L_n(\hat{\beta}, \Sigma, H) = 0$. Therefore, we conclude that the maximizers exist.

The foregoing arguments imply that $\hat{H}_n(t)$ is a step function with jumps only at the Y_{ij} for which $\Delta_{ij} = 1$. Thus, the NPMLEs for (β_0, Σ_0, H_0) can be obtained by maximizing $L_n(\hat{\beta}, \Sigma, H)$ over the parameter space $(\beta, \Sigma) \in \Theta$ and the jump sizes of H at the Y_{ij}. This maximization can be realized via many optimization algorithms such as the large-scale unconstrained optimization function *fminunc* in MATLAB, which is described in the next section.

The asymptotic properties of the proposed estimators are stated in the following theorems.

Theorem 1. Under conditions C1–C6, $||\hat{\beta}_n - \beta_0|| \to 0$, $||\hat{\Sigma}_n - \Sigma_0|| \to 0$ and $\sup_{t \in [0, \tau]} |\hat{H}_n(t) - H_0(t)| \to 0$ almost surely, where $|| \cdot ||$ is the Euclidean norm.

Theorem 2. Under conditions C1–C6, the random element $\sqrt{n}(\hat{\beta}_n - \beta_0', \hat{\Sigma}_n - \Sigma_0', \hat{H}_n(\cdot) - H_0(\cdot))' \to$ converges weakly to a 0-mean Gaussian process in the metric space $R^{d_1} \times R^{d_2(d_1+1)/2} \times R^n[0, \tau]$, where $\hat{\Sigma}_n$ and Σ_0 are treated as extended column vectors consisting of the upper triangle elements and $F^n[0, \tau]$ is a normed space consisting of all the bounded functions and the norm is defined as the supremum norm on $[0, \tau]$. Furthermore, $\hat{\beta}_n$ and $\hat{\Sigma}_n$ are asymptotically efficient.

Remark 2. Theorem 1 presents the consistency of the MLEs. In conditions C1–C6, $H(\cdot)$ is not assumed to be a bounded function, which means that the weak-compactness of the parameter $H(\cdot)$ is not assumed. Thus obtaining a bound for the MLEs $\hat{H}_n(t)$ is a key to the proof of Theorem 1. The proof of Theorem 1 adopts some ideas from Murphy’s (1994) proof of the consistency for the gamma frailty model, but the technical details are quite different. Once the consistency is established, the asymptotic distributions of the MLE’s stated in Theorem 2 can be derived along the lines of Murphy (1995) and Parner (1998), although the verification of the continuous invertibility of the information operator is substantially different from theirs. In the statement of Theorem 2, asymptotically efficient estimators mean that the asymptotic variances attain the semiparametric efficiency bounds as defined by Bickel, Klaassen, Ritov and Wellner (1993, chap. 3). The proofs of Theorems 1 and 2 are given in the Appendix.

It is essential to estimate the asymptotic covariance matrices of $\hat{\beta}_n$ and $\hat{\Sigma}_n$. Intuitively, the variation in estimating the parameter $H(\cdot)$ arises from the variation in estimating the jump sizes of $H(\cdot)$ at the Y_{ij} for which $\Delta_{ij} = 1$. Thus we can regard the observed likelihood function as a likelihood function indexed by the parameters β and Σ and the parameters that represent the jump sizes of $H(\cdot)$ at the Y_{ij} for which $\Delta_{ij} = 1$. From the Fisher information theory in the parametric setting, the asymptotic covariance matrix in Theorem 2 can be estimated by the inverse of the observed information matrix for all the parameters. Specifically, for any constant vector $(h_1, h_2) \in R^{d_1} \times R^{d_2(d_1+1)/2}$ and any bounded function h_3, the asymptotic variance of $h_1^T \hat{\beta}_n + h_2^T \hat{\Sigma}_n + \int_0^T h_3(t) d\hat{H}_n(t)$ is equal to the asymptotic variance of $h_1^T \beta_0 + h_2^T \Sigma_0 + \sum_{\Delta_{ij}=1} h_3(Y_{ij}) H_0(Y_{ij})$ so that it can be estimated by $h_1^T \Sigma_1^{-1} h_2$, where Σ_1 is the vector comprising of h_1, h_2, and the $h_3(Y_{ij})$ for which $\Delta_{ij} = 1$ and Σ_0 is the negative Hessian matrix of $\log L_n(\hat{\beta}, \Sigma, \hat{H})$ with respect to (β, Σ) and the jump sizes of H at the Y_{ij} for which $\Delta_{ij} = 1$. The next theorem formalizes this approximation.

Theorem 3. Let $V(h_1, h_2, h_3)$ be the asymptotic variance of the random variable $n^{1/2} [h_1^T (\hat{\beta}_n - \beta_0) + h_2^T (\hat{\Sigma}_n - \Sigma_0) + \int_0^T h_3(t) d(\hat{H}_n(t) - H_0(t))]$. Under conditions C1–C6, the estimator $n h_1^T \Sigma_1^{-1} h_2 \to V(h_1, h_2, h_3)$ uniformly in (h_1, h_2, h_3) in probability.

Theorem 3 implies that when the number of uncensored observations is not too large, one can simply invert the observed information matrix for all the parameters, including β, Σ, and the $H(Y_{ij})$ for which $\Delta_{ij} = 1$ to calculate the variances and covariances. Our numerical studies revealed that this approximation is satisfactory for practical sample sizes.

4. NUMERICAL STUDIES

Simulation studies were conducted to evaluate the finite-sample properties of the proposed methods. In the first set of studies, the failure times were generated from the following special case of model (2):

$$-\log(\{S(t|X_{ij}, X_{2ij}, b_i)\}) = \log t - X_{ij} + X_{2ij} + b_i,$$

$$i = 1, \ldots, n; j = 1, 2,$$

where $X_{1i1} = 0, X_{1i2} = 1, X_{2i1} \equiv X_{2i2}$ is a uniform(0, 1) random variable, and b_i is 0-mean normal variance with variance σ^2. The censoring times were generated from the uniform(0, 15) distribution, corresponding to approximately 33% censoring rate.

We used the optimization algorithm *fminunc* in the optimization toolbox of MATLAB to obtain the maximum likelihood estimates of β_1, β_2, σ, and H. When the gradients and the Hessian derivatives of the likelihood function are provided, the search algorithm is a subspace trust region method and is based on the interior-reflective Newton method described by Coleman and Li (1994, 1996). In each iteration of the search, a large linear system is approximately solved by using the method of preconditioned conjugate gradients. The algorithm converges when the step search size and the norm of the search gradients are smaller than certain thresholds. To avoid negative estimates of the jump sizes for H or negative estimates of σ, we used the logarithms of the jumps sizes and $\log \sigma$ as the parameters during the search.

The starting values for $(\beta_1, \beta_2, \sigma)$ were set to be $(0, 0, 1)$. The starting value for the jump size $H(Y_{ij})$ at the failure time Y_{ij} was given by (A.1) in Section A.1, on the right side of which the values for $(\beta_1, \beta_2, \sigma)$ were set to be the initial values and $H(t)$ was set to be t. In general, the search algorithm converged within 10 iterations. After the algorithm converged, the variance estimates were calculated by inverting the observed information matrix.
Table 1 displays the results of these simulation studies with \(n = 200 \). The MLEs for all of the parameters show little bias. The proposed standard error estimators agree well with the empirical standard errors, and the confidence intervals provide reasonable coverages.

For comparison, we also computed the estimates based on the method of Cai et al. (2002), which minimizes the criterion function

\[
n_p \sum_{i=1}^{n} \sum_{j=1}^{n} \left[\frac{\Delta_i d(Y_{ij} \leq Y_{i\kappa} \leq t_0)}{G_N(Y_{ij})} - \int_{h}^{\alpha} \int_{-\infty}^{\infty} e^{-(t_0 X^T \theta + b)} \frac{e^{-b \sqrt{2 \pi \sigma}}}{\sqrt{2 \pi \sigma}} \, db \, dt \right]^2
\]

where \(t_0 \) is the minimum of the 95th percentile of the observed \(Y_{ij} \) and the 98th percentile of the observed \(Y_{ij} \) for which \(\Delta_i = 1 \). In (4), \(\alpha \) is chosen to minimize the asymptotic variance of the estimator for \(\beta_0 \), \(\hat{G}_N(t) = e^{-\hat{\lambda}_N(t)} \) and \(\hat{G}_N(t) = e^{-\hat{\lambda}_N(t)} \), where \(\hat{\lambda}_N \) is the Nelson–Aalen estimator based on \((Y_{ij}, 1 - \Delta_j) \), \(i = 1, \ldots, n \), \(j = 1, \ldots, n \), and \(\hat{\lambda}_N \) is the Nelson–Aalen estimator based on \((Y_{ij} \leq Y_{i\kappa} \leq t_0) \), \(i = 1, \ldots, n \), \(j = 1, \ldots, n \). \(\hat{\lambda}_N \) is the mean squared errors (MSEs) for Cai et al.’s estimators of \(\beta_1 \) and \(\beta_2 \), and \(\sigma \) turned out to be .096, .749, and .935 under \(\sigma = 3 \), .055, .192, and .311 under \(\sigma = 1 \). Thus these estimators can be considerably less efficient than the MLEs, especially when there is strong intraclass dependence. It would be interesting to make comparisons with Lam et al.’s method. Their estimators are not easy to program, however.

In our second set of studies, we considered bivariate normal random effects. The failure times were generated from the following model:

\[
\text{logit}(S(t|X_{1i}, b_{1i}, b_{2i})) = \log((1 + t/2)^2 - 1) + .5X_{1ij} - .5X_{2ij} + b_{1i} + X_{2j}b_{2i},
\]

where \(X_{1i1} = 0, X_{1i2} = 1, X_{2i1} \equiv X_{2i2} \) is a uniform \((0, 1)\) random variable, and \((b_{1i}, b_{2i}) \) has a bivariate normal distribution with 0 means, unit variances, and covariance \(-.4\). The censoring times were set to be \(\text{min}(3, C^*) \), where \(C^* \) is uniform \((3/8, 11/8)\), so that approximately 34% of the failure times were censored. The optimization algorithm \textit{fminunc} was again used to find the maximum likelihood estimates. We used the logarithms of the jump sizes of \(H \) and the elements in the square root of the covariance matrix of the random effects as the parameters during the search. To ensure that the covariance matrix estimate is positive-definite, we let the objective function be a large negative value (i.e., \(-10^5\)) if any condition for a positive-definite matrix was violated. This penalization essentially restricts the search within the meaningful regions of the parameters. As before, both the gradients and the Hessian derivatives of the objective function were supplied in the search algorithm. The starting values for the regression parameters and the covariance matrix were 0’s and the identity matrix, whereas the starting values for the jump sizes of \(H \) were determined by (A.1), in which the parametric components were set to be the initial values of \(H(t) \) to be 0.

Table 2 displays the results for \(n = 200 \) and \(n = 400 \). For \(n = 200 \), the search usually converged after about 10 iterations, and it took less than 2 hours to complete 500 repetitions on 20 1.4-GHz Athlon machines. For \(n = 400 \), it took about 10 hours to complete. In the table, \(\sigma_{11}, \sigma_{22}, \) and \(\sigma_{12} \) are

| Table 2. Summary Statistics for the Simulation Studies With Two Random Effects |
|-----------------|-----------------|-----------------|-----------------|
| \(n \) | Parameter | Value | Mean | SE | SEE | 95% CP | MSE |
|-----------------|-----------------|-----------------|-----------------|
| 200 | \(\beta_1 \) | .50 | .498 | .186 | .188 | .958 | .035 |
| | \(\beta_2 \) | \(-.50 \) | \(-.520 \) | \(.391 \) | \(.412 \) | \(.956 \) | \(.153 \) |
| | \(\sigma_1 \) | .979 | .861 | .341 | .440 | .978 | .130 |
| | \(\sigma_2 \) | .204 | .324 | .454 | .620 | .968 | .221 |
| | \(\sigma_{12} \) | .979 | 1.069 | .837 | 1.222 | .946 | .708 |
| | \(H(t) \) | \(.891 \) | \(.920 \) | \(.231 \) | \(.237 \) | \(.962 \) | \(.054 \) |
| 400 | \(\beta_1 \) | .50 | .504 | .135 | .133 | .950 | .018 |
| | \(\beta_2 \) | \(-.50 \) | \(-.499 \) | \(.299 \) | \(.291 \) | \(.948 \) | \(.089 \) |
| | \(\sigma_1 \) | .979 | .891 | .263 | .295 | .982 | .077 |
| | \(\sigma_2 \) | .204 | .258 | .381 | .475 | .938 | .148 |
| | \(\sigma_{12} \) | .979 | 1.019 | .731 | .984 | .938 | .535 |
| | \(H(t) \) | \(.891 \) | \(.903 \) | \(.169 \) | \(.163 \) | \(.952 \) | \(.029 \) |
| | \(H(t) \) | \(.203 \) | \(.208 \) | \(.419 \) | \(.393 \) | \(.946 \) | \(.176 \) |
| | \(H(t) \) | \(3.517 \) | \(3.527 \) | \(.761 \) | \(.716 \) | \(.944 \) | \(.578 \) |
| | \(H(t) \) | \(5.250 \) | \(5.250 \) | \(1.555 \) | \(1.222 \) | \(.932 \) | \(1.234 \) |

NOTE: Mean and SE represent the mean and standard error of the estimator. SEE is the mean of the standard error estimator, and 95% CP is the coverage probability of the 95% confidence interval. Each entry is based on 500 simulated datasets.
the elements in the square root of the covariance matrix for b_1 and b_2 so that $\sigma_{11} = \sigma_{22} = .979$ and $\sigma_{12} = -.204$. For the regression parameters and the function H, the MLEs show little bias and the proposed standard error estimators agree well with the empirical standard errors. The parameters for the covariance matrix of the random effects are estimated less well, although there is a trend for improvement as n increases.

5. AN EXAMPLE

We now illustrate the proposed methods with the well-known Diabetic Retinopathy Study (Huster, Brookmeyer, and Self 1989), which was conducted to assess the effectiveness of laser photocoagulation in delaying visual loss among patients with diabetic retinopathy. One eye of each patient was randomly selected to receive the laser treatment, while the other eye was used as a control. The failure time of interest is the time to visual loss as measured by visual acuity less than 5/200. Following previous authors, we confine our attention to a subset of 197 high-risk patients, and consider three covariates: X_{ijkl} indicates, by the values 1 versus 0, whether or not the jth eye (j = 1 for the left eye and $j = 2$ for the right eye) of the ith patient was treated with laser photocoagulation. X_{2ij} indicates, by the values 1 versus 0, whether the ith patient had adult-onset or juvenile-onset diabetics, and $X_{3ij} = X_{ij1} * X_{ij2}$. We fit model (2) with these three covariates, along with random effects b_i to account for the correlation between the two eyes of the same patient. We used the finv function with the starting values described in the previous section. The results of the analysis are given in Table 3. There is a high degree of dependence between the failure times of the two eyes from the same patient. Both the treatment indicator and the interaction term are significant, whereas the diabetic type is not. Cai et al. (2002) reported estimates of β_1, β_2, and β_3 of -.46, .74, and -.41 with estimated standard errors of .30, .38, and .54. The conclusions based on the two sets of results would be somewhat different.

To compare the fit of competing models, Cai et al. (2002, p. 516) proposed a distance measure that summarizes the differences between the observed and fitted values of the failure times. This distance measure turns out to be 2.233×10^4 for the proportional odds model with normal random effect as opposed to 2.241×10^4 for the proportional hazards model with gamma frailty. Thus the former model appears to fit the data slightly better than the latter.

One important application of random-effects models is to predict the future survival experience of one member given the survival history of the other members of the same cluster. In the Diabetic Retinopathy Study, one may be interested in estimating, for example, the conditional survival probabilities of the treated eye given that it has not failed before 30 months while the untreated eye failed between 24 and 30 months, that is, $\Pr(T_2 > t | T_2 > 30, 24 < T_1 < 30, X_{11} = 0, X_{12} = 1, X_2)$ for $t > 30$, where T_2 is the failure time for the treated eye and T_1 is the failure time for the untreated eye. X_{1k} is the treatment status for the kth eye, and X_2 is the diabetic type for this patient. It is straightforward to show that

$$\Pr(T_2 > t | T_2 > 30, 24 < T_1 < 30, X_{11} = 0, X_{12} = 1, X_2)$$

$$= \int g(u, t, 1, X_2; \beta, \sigma, H) \{g(u, 24, 0, X_2; \beta, \sigma, H) - g(u, 30, 0; X_2; \beta, \sigma, H)\} \phi(u) du$$

$$\times \left(\int g(u, 30, 1, X_2; \beta, \sigma, H) \{g(u, 24, 0, X_2; \beta, \sigma, H) - g(u, 30, 0; X_2; \beta, \sigma, H)\} \phi(u) du\right)^{-1},$$

where $\phi(\cdot)$ is the standard normal density function and $g(u, t, 1, X_2; \beta, \sigma, H) = e^{-(\beta_1 X_{11} + \beta_2 X_2 - \beta_1 X_{12} X_2 - \sigma u)} / H(t) + e^{-(\beta_1 X_{11} + \beta_2 X_2 - \beta_1 X_{12} X_2 - \sigma u)}$.

We can easily estimate this probability function by replacing β_1, β_2, σ, and H in (5) by their respective maximum likelihood estimates and then evaluating the integration via the Gaussian-quadrature formula. The variance function is given by $D^T J^{-1} D$, where D is the derivative of (5) with respect to β_1, β_2, σ and the jump sizes of H at the Y_{ij} for which $\Delta y = 1$. Figure 1 displays the estimated survival curves along with the 95% confidence intervals for the two diabetic types.

6. DISCUSSION

We have developed consistent and efficient estimators for the proportional odds model with random effects, which is a useful alternative to the popular proportional hazards model with gamma frailty. The proposed estimators are more efficient than those of Cai et al. (2002). It is computationally less demanding to evaluate the variances of the proposed estimators than those of Cai et al.'s estimators, because the latter require a multilayer summation.

The proposed numerical algorithm does not guarantee a global maximum. This is a common problem for all MLEs in complex settings. Our experience, however, indicates that the proposed algorithm works well in practice. One approach to increase one's confidence in the estimates is to employ different starting values. We have tried different starting values in our simulated and real data and obtained very similar answers. Note that the existing ad hoc estimating equations may have multiple solutions as well.

For the variance estimation, we invert the observed information matrix on the basis of Theorem 3. When the number of uncensored observations is large, the matrix inversion may potentially be unstable. An alternative approach is to use the numerical differentiation of the profile log-likelihood function, as implemented by Huang and Rossini (1997) and Murphy et al. (1997). In the latter approach, the choice of the neighborhood is arbitrary, and no variance estimates are available for the survival function estimators.

Table 3. Maximum Likelihood Estimates of the Random-Effect Proportional Odds Model for the Diabetic Retinopathy Study

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>SE</th>
<th>Est / SE</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_1</td>
<td>-.659</td>
<td>.295</td>
<td>-.233</td>
<td>.025</td>
</tr>
<tr>
<td>β_2</td>
<td>.496</td>
<td>.345</td>
<td>1.438</td>
<td>.150</td>
</tr>
<tr>
<td>β_3</td>
<td>-1.234</td>
<td>.466</td>
<td>-2.650</td>
<td>.008</td>
</tr>
<tr>
<td>σ</td>
<td>1.296</td>
<td>.251</td>
<td>5.168</td>
<td><.001</td>
</tr>
</tbody>
</table>

NOTE: SE is the estimated standard error, and p value pertains to the two-sided test of zero parameter value.
It would be worthwhile to study maximum likelihood estimation for a general class of linear transformation models with random effects
\[
\psi[S(t|X_{ij},Z_{ij},b_i)] = G(t) + X_{ij}^\top \beta + Z_{ij}^\top b_i,
\]
where \(\psi \) is a given link function. A versatile family of link functions is \(\psi(s) = \log(\lambda^{-1}(s^{-\lambda} - 1)) \), \(\lambda \geq 0 \), which contains both the proportional hazards model (\(\lambda = 0 \)) and the proportional odds model (\(\lambda = 1 \)). General linear transformation models have been studied by Bickel (1986), Dabrowska and Doksum (1988), Cheng et al. (1995), and Chen et al. (2002), among others, for independent failure time data and by Cai et al. (2002) for clustered failure time data (with a scalar random effect), although asymptotically efficient estimators have yet to be developed. It is expected that the asymptotic normality and the efficiency of the MLEs for this class of models depend on the smoothness property of \(\psi \). We are currently investigating the conditions for \(\psi \) and developing the requisite asymptotic theory.

The proposed methods are based on the normality of the random effects. The normality assumption may not be satisfied in some applications. It would be desirable to relax this assumption and to require only that the random effects have 0 means.

APPENDIX: PROOFS OF THEOREMS

A.1 Proof of Theorem 1

The proof of Theorem 1 mimics Murphy’s (1994) proof of consistency for the proportional hazards model with gamma frailty. Substantial technical complications arise from the fact that, unlike in the gamma frailty model, in our setting the random effects cannot be integrated out explicitly. The proof consists of two major steps. In the first step, we show that \(\hat{H}_n(\cdot) \) has an upper bound in \([0, \tau]\) with probability 1; in the second step, we show that any convergent subsequence of \(\{\hat{\beta}_n, \hat{\Sigma}_n, \hat{H}_n\} \) must converge to \(\{\beta_0, \Sigma_0, H_0\} \).

Step 1. We prove that \(\hat{H}_n(\cdot) \) has an upper bound in \([0, \tau]\) with probability 1. Our approach is to show that because \(\hat{H}_n \) maximizes \(L_n \), it cannot diverge. Let \(L_n(\beta, \Sigma, H) = \log L_n(\beta, \Sigma, H) \). By definition, \(L_n(\beta_n, \Sigma_n, H_n) - L_n(\beta, \Sigma, H) \geq 0 \) for any \(\beta, \Sigma, \) and \(H \). We wish to show that if \(\hat{H}_n \) diverges, then the difference in the log-likelihood must be negative, which will be a contradiction. If \(H \) is continuous, then \(L_n(\beta, \Sigma, H) \) will be infinite for finite \(n \). Thus the choice of \(H = H_0 \) is excluded. The key is to construct a suitable function \(\hat{H}_n \) that uniformly converges to \(H_0 \). Suppose that \(\hat{H}_n(\tau) \to \infty \) in some sample space with positive probability. We show that \(n^{-1/2} L_n(\hat{\beta}_n, \hat{\Sigma}_n, \hat{H}_n) - L_n(\beta_0, \Sigma_0, H_0) \) diverges to \(-\infty\) if \(\hat{H}_n(\tau) \to \infty \).

We construct the function \(\hat{H}_n \) by imitating \(H_0 \). By differentiating \(L_n(\beta, \Sigma, H) \) with respect to \(H[Y_{ij}] \) and setting the derivative to 0, we see that \(\hat{H}_n[Y_{ij}] \) satisfies the equation

\[
\frac{\Delta_{ij}}{H(Y_{ij})} = \sum_{k=1}^{n} \left\{ \int_{b} R_{ik}(\hat{\beta}_n, H, b) R_{jk}(Y_{ij}, \hat{\beta}_n, H, b) e^{-b^T \hat{\Sigma}_n^{-1} b/2} \Delta b \right\}^{-1},
\]

where

\[
R_{ik}(\beta, H, b) = \prod_{l=1}^{n_l} \frac{e^{-X_{il}^T \beta + Z_{il}^T b}}{\{H(Y_{il}) + e^{-X_{il}^T \beta + Z_{il}^T b}\}^{1+\Delta_{il}}}
\]
and
\[
R_{2k}(t, \beta, H, b) = \sum_{l=1}^{m} \frac{(1 + \Delta_{kl})I(Y_{kl} \geq t)}{\int_{0}^{b} e^{-\beta'X_{kl} + Z_{kl}b} dt}.
\]

Thus we define \(\tilde{H}_n(t) \) as a step function with jumps only at the \(Y_{ij} \) for which \(\Delta_{ij} = 1 \) and the jump size \(\tilde{H}_n(Y_{ij}) \) satisfies the equation
\[
\frac{\Delta_{ij}}{\tilde{H}_n(Y_{ij})} = \sum_{k=1}^{n} \left\{ \int_{0}^{b} R_{1k}(\beta, H, b)R_{2k}(Y_{ij}, \beta, H, b) \times e^{-b'\Sigma_{kl}^{-1}b/2} |\Sigma_{kl}|^{-1/2}
\times \left(\int_{0}^{b} R_{1k}(\beta, H, b)e^{-b'\Sigma_{kl}^{-1}b/2} |\Sigma_{kl}|^{-1/2} \right)^{-1} \right\}.
\]

(2.2)

Specifically, \(\tilde{H}_n(t) = \sum_{i=1}^{n} \sum_{j=1}^{m} I(Y_{ij} \leq t)\tilde{H}_n(Y_{ij}) \).

We show that \(\tilde{H}_n(t) \) converges to \(H_0(t) \) uniformly in \(t \in [0, \tau] \) with probability 1. By the Glivenko–Cantelli theorem (van der Vaart and Wellner 1996, p. 122), \(\tilde{H}_n(t) \) converges almost surely to \(E(E_{\cup_{j=1}^{n} I(Y_{ij} \leq t)\Delta_{ij}/\mu(Y_{ij})}) \), where
\[
\mu(y) = E\left\{ \int_{0}^{b} R_{1k}(\beta_0, H_0, b)R_{2k}(\gamma, \beta_0, H_0, b) \times e^{-b'\Sigma_{kl}^{-1}b/2} |\Sigma_{kl}|^{-1/2} \right\}
\times \left(\int_{0}^{b} R_{1k}(\beta_0, H_0, b)e^{-b'\Sigma_{kl}^{-1}b/2} |\Sigma_{kl}|^{-1/2} \right)^{-1}.
\]

If we denote by \(S_{\mu}(X_{kl}, Z_{kl}) \) the survival function of \(C_{kl} \) given \((X_{kl}, Z_{kl}) \), then
\[
E\left\{ \frac{(1 + \Delta_{kl})I(Y_{kl} \geq y)}{\int_{0}^{b} e^{-\beta'X_{kl} + Z_{kl}b} dt} \right\}
= E\left[\frac{1}{H_0(Y_{kl}) + e^{-\beta'X_{kl} + Z_{kl}b}} \right] S_{\mu}(t|X_{kl}, Z_{kl}) dt.
\]

\[
= E\left[\frac{S_{\mu}(X_{kl}, Z_{kl})}{(H_0(Y_{kl}) + e^{-\beta'X_{kl} + Z_{kl}b})^2} \right].
\]

where the second equality follows from integration by part. Thus,
\[
\sum_{j=1}^{n} \left\{ E\left[\int_{0}^{b} S_{\mu}(X_{kl}, Z_{kl})H_0(Y_{ij}) dy \right] / \mu(Y_{ij}) \right\}
= E\left[\sum_{j=1}^{n} \int_{0}^{h} S_{\mu}(X_{kl}, Z_{kl})H_0(Y_{ij}) dy / \mu(Y_{ij}) \right].
\]

Consequently, \(\tilde{H}_n(t) \) uniformly converges to \(H_0(t) \) in \([0, \tau] \).

By plugging (A.1) into \(I_n(\beta, \Sigma, \tilde{H}_n) \), we obtain
\[
I_n(\beta_n, \Sigma_n, \tilde{H}_n) = \sum_{i=1}^{n} \log \left\{ \int_{0}^{b} R_{1i}(\tilde{H}_n, \Sigma_n, \tilde{H}_n) \mid \Sigma_n \mid^{-1/2} e^{-b'\Sigma_n^{-1}b/2} \right\}
- \sum_{i=1}^{n} \sum_{j=1}^{n} \Delta_{ij} \log \left\{ \int_{0}^{b} R_{1i}(\tilde{H}_n, \Sigma_n, \tilde{H}_n)R_{2i}(Y_{ij}, \tilde{H}_n, \Sigma_n, \tilde{H}_n) \times e^{-b'\Sigma_n^{-1}b/2} |\Sigma_n|^{-1/2} \right\}
\times \left(\int_{0}^{b} R_{1i}(\tilde{H}_n, \Sigma_n, \tilde{H}_n)e^{-b'\Sigma_n^{-1}b/2} |\Sigma_n|^{-1/2} \right)^{-1}.
\]

Likewise, by plugging (2.2) into \(I_n(\beta, \Sigma, \tilde{H}_n) \) and applying the Glivenko–Cantelli theorem, we see that \(n^{-1}I_n(\beta, \Sigma, \tilde{H}_n) = O(1) - n^{-1} \sum_{i=1}^{n} \sum_{j=1}^{n} \Delta_{ij} \log(n) \), where \(O(1) \) denotes a random variable bounded away from infinity almost surely. Thus,
\[
n^{-1}(I_n(\beta_n, \Sigma_n, \tilde{H}_n) - I_n(\beta_0, \Sigma_0, \tilde{H}_n)) = O(1)
+ n^{-1} \sum_{i=1}^{n} \log \left\{ \int_{0}^{b} R_{1i}(\tilde{H}_n, \Sigma_n, \tilde{H}_n) \mid \Sigma_n \mid^{-1/2} e^{-b'\Sigma_n^{-1}b/2} \right\}
- \sum_{i=1}^{n} \sum_{j=1}^{n} \Delta_{ij} \log \left\{ \int_{0}^{b} R_{1i}(\tilde{H}_n, \Sigma_n, \tilde{H}_n) \times R_{2i}(Y_{ij}, \tilde{H}_n, \Sigma_n, \tilde{H}_n) e^{-b'\Sigma_n^{-1}b/2} |\Sigma_n|^{-1/2} \right\}
\times \left(\int_{0}^{b} R_{1i}(\tilde{H}_n, \Sigma_n, \tilde{H}_n)e^{-b'\Sigma_n^{-1}b/2} |\Sigma_n|^{-1/2} \right)^{-1}.
\]

(A.3)

We show that if \(\tilde{H}_n(\tau) \to \infty \), then the right side of (A.3) will diverge to \(-\infty \). To this end, we bound each term in (A.3). Let \(m \) and \(M \) be constants such that \(0 < m \leq -E[-X_{ij}'\tilde{\beta}_n, \leq M < \infty \) almost surely for all \(k = 1, \ldots, n; l = 1, \ldots, n_k \). Because
\[
\tilde{H}_n(y) + e^{-X_{ij}'\tilde{\beta}_n, \Sigma_n} \leq \tilde{H}_n(y) + e^{-X_{ij}'\tilde{\beta}_n, \Sigma_n} \leq \tilde{H}_n(y) + m.
\]

Similarly, \(\tilde{H}_n(y) + e^{-X_{ij}'\tilde{\beta}_n, \Sigma_n} \leq \tilde{H}_n(y) + M \). Thus there exist constants \(C_1 \) and \(C_2 \) such that the following results hold:
\[
\int_{0}^{b} R_{1i}(\tilde{H}_n, \tilde{\Sigma}_n, \tilde{H}_n) \mid \Sigma_n \mid^{-1/2} e^{-b'\Sigma_n^{-1}b/2} \right\}
\leq C_1 \int_{0}^{b} \prod_{j=1}^{n_k} \left[e^{-\left(1 + \Delta_{ij}\right)}/\left(H_n(Y_{ij}) + m\right)^{1+\Delta_{ij}} \right] \mid \Sigma_n \mid^{-1/2} e^{-b'\Sigma_n^{-1}b/2} \right\}
\leq C_1 \int_{0}^{b} \prod_{j=1}^{n_k} \left[\frac{1}{\left(H_n(Y_{ij}) + m\right)^{1+\Delta_{ij}}} \right] \mid \Sigma_n \mid^{-1/2} e^{-b'\Sigma_n^{-1}b/2} \right\}
\neq C_1 \int_{0}^{b} \prod_{j=1}^{n_k} \left[\frac{1}{\left(H_n(Y_{ij}) + M\right)^{1+\Delta_{ij}}} \right] \mid \Sigma_n \mid^{-1/2} e^{-b'\Sigma_n^{-1}b/2} \right\}
\neq (A.4)
\]

and
\[
\int_{0}^{b} R_{1i}(\tilde{H}_n, \tilde{\Sigma}_n, \tilde{H}_n) \mid \Sigma_n \mid^{-1/2} e^{-b'\Sigma_n^{-1}b/2} \right\}
\leq C_1 \int_{0}^{b} \prod_{j=1}^{n_k} \left[\frac{1}{\left(H_n(Y_{ij}) + M\right)^{1+\Delta_{ij}}} \right] \mid \Sigma_n \mid^{-1/2} e^{-b'\Sigma_n^{-1}b/2} \right\}
\neq C_1 \int_{0}^{b} \prod_{j=1}^{n_k} \left[\frac{1}{\left(H_n(Y_{ij}) + M\right)^{1+\Delta_{ij}}} \right] \mid \Sigma_n \mid^{-1/2} e^{-b'\Sigma_n^{-1}b/2} \right\}
× \left\{ \sum_{l=1}^{n_k} \frac{(1 + \Delta_{kl}) I(Y_{kl} \geq y_j) e^{-\|\beta_l^* b\|^2}}{H_n(Y_{kl}) + M} \right\} \\
\times \left\{ \Sigma_{n^2}^{-1/2} e^{-b^T \Sigma_n b/2} \right\} db \\
g \geq C_2 \sum_{l=1}^{n_k} \frac{I(Y_{kl} \geq y_j)}{H_n(Y_{kl}) + M} \prod_{l=1}^{n_k} \frac{1}{(\beta_l^* H_n(Y_{kl}) + M)^{1 + \Delta_{kl}}}.
\tag{A.5}

After plugging (A.4) and (A.5) into (A.3), we obtain

\begin{align*}
n^{-1} \{ l_n(\beta_n, \Sigma_n, \hat{H}_n) - l_n(\beta_0, \Sigma_0, \hat{H}_n) \} \\
= O(1) - n^{-1} \sum_{i=1}^n \sum_{j=1}^{n_i} (1 + \Delta_{ij}) \log(\hat{H}_n(Y_{ij}) + m) \\
- n^{-1} \sum_{i=1}^n \sum_{j=1}^{n_i} \Delta_{ij} \log \left\{ n^{-1} \sum_{k=1}^{n_k} \frac{I(Y_{kl} \geq y_j)}{H_n(Y_{kl}) + M} \prod_{k=1}^{n_k} \frac{1}{(\beta_l^* H_n(Y_{kl}) + M)^{1 + \Delta_{kl}}} \right\}.
\end{align*}

Because there exists a constant C_3 such that

\begin{align*}
\frac{n^{-1} \sum_{i=1}^{n_i} \sum_{j=1}^{n_i} \Delta_{ij} \log \left\{ n^{-1} \sum_{k=1}^{n_k} \frac{I(Y_{kl} \geq y_j)}{H_n(Y_{kl}) + M} \prod_{k=1}^{n_k} \frac{1}{(\beta_l^* H_n(Y_{kl}) + M)^{1 + \Delta_{kl}}} \right\}}{n^{-1} \sum_{i=1}^{n_i} \sum_{j=1}^{n_i} \frac{1}{(\beta_l^* H_n(Y_{ij}) + M)^{1 + \Delta_{ij}}} - C_3} \geq 0,
\end{align*}

we conclude that

\begin{align*}
n^{-1} \{ l_n(\beta_n, \Sigma_n, \hat{H}_n) - l_n(\beta_0, \Sigma_0, \hat{H}_n) \} \\
= O(1) - n^{-1} \sum_{i=1}^n \sum_{j=1}^{n_i} (1 + \Delta_{ij}) \log(\hat{H}_n(Y_{ij}) + m) \\
- n^{-1} \sum_{i=1}^n \sum_{j=1}^{n_i} \Delta_{ij} \log \left\{ n^{-1} \sum_{k=1}^{n_k} \frac{I(Y_{kl} \geq y_j)}{H_n(Y_{kl}) + M} \prod_{k=1}^{n_k} \frac{1}{(\beta_l^* H_n(Y_{kl}) + M)^{1 + \Delta_{kl}}} \right\}.
\tag{A.6}
\end{align*}

It remains to show that if \(\hat{H}_n(\tau) \to \infty \), then the right side of (A.6) diverges to \(-\infty\). To this end, we choose a partition of \([0, \tau]\) as follows: With \(s_0 = \tau \), choose \(s_1 < s_0 \) such that

\begin{align*}
\frac{1}{2} E \left\{ \sum_{j=1}^{n_i} (1 + \Delta_{ij}) I(Y_{ij} = s_0) \right\} > E \left\{ \sum_{j=1}^{n_i} \Delta_{ij} I(Y_{ij} \in [s_1, s_0)) \right\}.
\end{align*}

By conditions C2 and C4, such an \(s_1 \) exists. Define a constant \(\epsilon \in (0, 1) \) such that

\begin{align*}
\frac{\epsilon}{1 - \epsilon} = \frac{E \left\{ \sum_{j=1}^{n_i} I(Y_{ij} \in [s_1, s_0)) \right\}}{E \left\{ \sum_{j=1}^{n_i} \Delta_{ij} I(Y_{ij} \in [0, \tau)) \right\}}.
\end{align*}

If \(s_1 > 0 \), then we can choose \(s_2 \equiv \max(0, s) \) such that \(s \) is the minimum value less than \(s_1 \), satisfying that

\begin{align*}
(1 - \epsilon) E \left\{ \sum_{j=1}^{n_i} (1 + \Delta_{ij}) I(Y_{ij} \in [s_1, s_0)) \right\} \\
\geq E \left\{ \sum_{j=1}^{n_i} \Delta_{ij} I(Y_{ij} \in [s_1, s_0)) \right\}.
\end{align*}

Clearly, \(s_2 \) exists under condition C4, and \(s_2 < s_1 \). This process is continued so that we obtain a sequence \(\tau = s_0 > s_1 > s_2 > \cdots > 0 \) such that

\begin{align*}
\frac{1}{2} E \left\{ \sum_{j=1}^{n_i} (1 + \Delta_{ij}) I(Y_{ij} = s_0) \right\} \\
\geq E \left\{ \sum_{j=1}^{n_i} \Delta_{ij} I(Y_{ij} \in [s_1, s_0)) \right\}.
\end{align*}

and

\begin{align*}
(1 - \epsilon) E \left\{ \sum_{j=1}^{n_i} (1 + \Delta_{ij}) I(Y_{ij} \in [s_1, s_0)) \right\} \\
\geq E \left\{ \sum_{j=1}^{n_i} \Delta_{ij} I(Y_{ij} \in [s_1, s_0)) \right\}.
\end{align*}

We claim that such a sequence cannot be infinite, that is, there exists a finite \(N \) such that \(s_{N+1} = 0 \); otherwise, \(s_p \to s^* \) for some \(s^* \in [0, \tau) \). By the definition of \(s_p \),

\begin{align*}
(1 - \epsilon) E \left\{ \sum_{j=1}^{n_i} (1 + \Delta_{ij}) I(Y_{ij} \in [s_0, s_1)) \right\} \\
= E \left\{ \sum_{j=1}^{n_i} \Delta_{ij} I(Y_{ij} \in [s_0, s_1)) \right\}.
\end{align*}

We sum the foregoing equations over \(p = 1, 2, \ldots \), and by the continuity of true densities, we obtain

\begin{align*}
(1 - \epsilon) E \left\{ \sum_{j=1}^{n_i} (1 + \Delta_{ij}) I(Y_{ij} \in [s^*, s_1)) \right\} \\
= E \left\{ \sum_{j=1}^{n_i} \Delta_{ij} I(Y_{ij} \in [s^*, s_1)) \right\}.
\end{align*}

Thus,

\begin{align*}
(1 - \epsilon) E \left\{ \sum_{j=1}^{n_i} I(Y_{ij} \in [s^*, s_1)) \right\} \leq \epsilon E \left\{ \sum_{j=1}^{n_i} \Delta_{ij} I(Y_{ij} \in [s^*, s_1)) \right\},
\end{align*}

which contradicts the choice of \(\epsilon \). Therefore, the sequence is finite, \(\tau = s_0 > \cdots > s_{N+1} = 0 \). Now the right side of (A.6) can be bounded by

\begin{align*}
-n^{-1} \sum_{i=1}^n \sum_{j=1}^{n_i} I(Y_{ij} = \tau) (1 + \Delta_{ij}) \log(\hat{H}_n(\tau) + m) \\
- N \sum_{p=0}^{N} \sum_{i=1}^n \sum_{j=1}^{n_i} (1 + \Delta_{ij}) I(Y_{ij} \in [s_{p+1}, s_p)) \\
\times \log(\hat{H}_n(s_{p+1}) + m) \\
- N \sum_{p=0}^{N} \sum_{i=1}^n \sum_{j=1}^{n_i} \Delta_{ij} I(Y_{ij} \in [s_{p+1}, s_p)) \\
\times \log \left\{ n^{-1} \sum_{k=1}^{n_k} \frac{I(Y_{kl} \geq y_j, Y_{kl} \in [s_{p+1}, s_p))}{H_n(s_p) + M} \right\} + O(1)
\end{align*}

\begin{align*}
\leq -\frac{1}{2n} \sum_{i=1}^n \sum_{j=1}^{n_i} (1 + \Delta_{ij}) I(Y_{ij} = \tau) \log(\hat{H}_n(\tau) + M) \\
- \frac{1}{2n} \sum_{i=1}^n \sum_{j=1}^{n_i} (1 + \Delta_{ij}) I(Y_{ij} = \tau) \log(\hat{H}_n(\tau) + M) \\
- n^{-1} \sum_{i=1}^n \sum_{j=1}^{n_i} \Delta_{ij} I(Y_{ij} \in [s_1, s_0)) \log(\hat{H}_n(\tau) + M) \\
- N \sum_{p=1}^{N} \left\{ n^{-1} \sum_{i=1}^n \sum_{j=1}^{n_i} (1 + \Delta_{ij}) I(Y_{ij} \in [s_p, s_{p-1})) \right\}
\end{align*}
\[\times \log(\hat{H}_n(s_p) + m) \]
\[- n^{-1} \sum_{i=1}^{m} \sum_{j=1}^{n_i} \Delta_{ij} I(Y_{ij} \in [s_{p+1}, s_p]) \log(\hat{H}_n(s_p) + M) \]
\[- N \sum_{p=0}^{n} \sum_{i=1}^{n_i} \Delta_{ij} I(Y_{ij} \in [s_{p+1}, s_p]) \]
\[\times \left\{ \left(\int_{b} \int_{b} R_{11}(\beta_0, H_0, b) |\Sigma_0|^{-1/2} e^{-b^T \Sigma_b^{-1} b/2} \mathrm{d}b \right) \right\}^{n_i} \frac{n_i}{j=1} H_0(Y_{ij})^{\Delta_{ij}} \]
\[\times \left\{ \int_{b} \int_{b} R_{11}(\beta_0, H_0, b) |\Sigma_0|^{-1/2} e^{-b^T \Sigma_b^{-1} b/2} \mathrm{d}b \right\} \]

Because the right side is the negative Kullback–Leibler information, we have
\[\prod_{j=1}^{n_i} H_0(Y_{ij})^{\Delta_{ij}} \int_{b} \int_{b} R_{11}(\beta_0, H_0, b) |\Sigma_0|^{-1/2} e^{-b^T \Sigma_b^{-1} b/2} \mathrm{d}b \]

almost surely. In other words,
\[\prod_{j=1}^{n_i} \left\{ \int_{b} \int_{b} R_{11}(\beta_0, H_0, b) |\Sigma_0|^{-1/2} e^{-b^T \Sigma_b^{-1} b/2} \mathrm{d}b \right\} \]

We show that (A.9) entails that $\hat{H}_n(t) = 0$, and $H^*(t) = H_0(t)$. Fix an integer k such that $1 \leq k \leq n_i$. We let $\Delta_{ij} = 1$, $Y_{ij} = 0$ in (A.9) for $j = 1, \ldots, k$; for those j such that $j > k$, we perform the following action on the jth term on both sides of (A.9). If $\Delta = 0$, then we replace Y_{ij} with t; if $\Delta = 1$, then we integrate Y_{ij} from 0 to t. Thus we obtain
\[\prod_{j=1}^{k} \left\{ \int_{b} \int_{b} R_{11}(\beta_0, H_0, b) |\Sigma_0|^{-1/2} e^{-b^T \Sigma_b^{-1} b/2} \mathrm{d}b \right\}^{n_i} \frac{n_i}{j=1} H_0(Y_{ij})^{\Delta_{ij}} \]
\[\times \left\{ \int_{b} \int_{b} R_{11}(\beta_0, H_0, b) |\Sigma_0|^{-1/2} e^{-b^T \Sigma_b^{-1} b/2} \mathrm{d}b \right\} \]

Because $\Delta_{ij}; j = k + 1, \ldots, n_i$ are arbitrary, we sum the two sides of (A.10) over all possible $\Delta_{ij}; j = k + 1, \ldots, n_i$, to yield
\[\prod_{j=1}^{k} \left\{ \int_{b} \int_{b} R_{11}(\beta_0, H_0, b) |\Sigma_0|^{-1/2} e^{-b^T \Sigma_b^{-1} b/2} \mathrm{d}b \right\}^{n_i} \frac{n_i}{j=1} H_0(Y_{ij})^{\Delta_{ij}} \]
\[\times \left\{ \int_{b} \int_{b} R_{11}(\beta_0, H_0, b) |\Sigma_0|^{-1/2} e^{-b^T \Sigma_b^{-1} b/2} \mathrm{d}b \right\} \]

In conclusion, we have shown that $\hat{H}_n(t)$ has an upper bound with probability 1. Thus it follows from Helly’s selection theorem that there exists a convergent subsequence, still denoted by $\hat{H}_n(t)$, that converges pointwise to a monotone function $H^*(t)$ in $[0, \tau]$. Because $\hat{\beta}_n$ and $\hat{\Sigma}_n$ belong to a compact set, by choosing a further subsequence, we can assume that $\hat{\beta}_n \rightarrow \beta^*$ and $\hat{\Sigma}_n \rightarrow \Sigma^*$ for some random vectors β^* and Σ^*.

Step 2. We show that $\beta^* = \beta_0$, $\Sigma^* = \Sigma_0$, and $H^*(t) = H_0(t)$. Define
\[R_{3k}(t, \beta, \Sigma, H) = \int_{b} \int_{b} R_{11}(\beta, H_0, b) e^{-b^T \Sigma_b^{-1} b/2} \mathrm{d}b \]
\[\int_{b} \int_{b} \frac{R_{11}(\beta, H_0, b)}{R_{3k}(t, \beta, \Sigma, H)} e^{-b^T \Sigma_b^{-1} b/2} \mathrm{d}b \]

In view of (A.1) and (A.2), we see that $H_n(t)$ is absolutely continuous with respect to $H_0(t)$, and
\[H_n(t) = \int_{b} \int_{b} R_{11}(\beta, H_0, b) e^{-b^T \Sigma_b^{-1} b/2} \mathrm{d}b \]
\[\int_{b} \int_{b} \frac{R_{11}(\beta, H_0, b)}{R_{3k}(t, \beta, \Sigma, H)} e^{-b^T \Sigma_b^{-1} b/2} \mathrm{d}b \]

By taking the limits on both sides of the display, we conclude that $H^*(t)$ is absolutely continuous with respect to $H_0(t)$, so that $H^*(t)$ is differentiable with respect to t. In addition, $dH_n(t)/dH_0(t)$ converges to $dH^*(t)/dH_0(t)$ uniformly in t. On the other hand,
\[0 \leq n^{-1} I_p(h_0, \Sigma_0, H_0) - I_p(\hat{\beta}_n, \hat{\Sigma}_n, \hat{H}_n) \]
\[= n^{-1} \sum_{i=1}^{m} \sum_{j=1}^{n_i} \Delta_{ij} \log(\hat{H}_n(Y_{ij})/\hat{H}_n(Y_{ij})) \]
\[\times \left\{ \left(\int_{b} \int_{b} R_{11}(\beta_0, H_0, b) |\Sigma_0|^{-1/2} e^{-b^T \Sigma_b^{-1} b/2} \mathrm{d}b \right) \right\}^{n_i} \frac{n_i}{j=1} H_0(Y_{ij})^{\Delta_{ij}} \]
\[\times \left\{ \left(\int_{b} \int_{b} R_{11}(\beta_0, H_0, b) |\Sigma_0|^{-1/2} e^{-b^T \Sigma_b^{-1} b/2} \mathrm{d}b \right) \right\} \]

Because the right side is the negative Kullback–Leibler information, we have
\[\prod_{j=1}^{n_i} H_0(Y_{ij})^{\Delta_{ij}} \int_{b} \int_{b} R_{11}(\beta_0, H_0, b) |\Sigma_0|^{-1/2} e^{-b^T \Sigma_b^{-1} b/2} \mathrm{d}b \]
\[\times \left\{ \left(\int_{b} \int_{b} R_{11}(\beta_0, H_0, b) |\Sigma_0|^{-1/2} e^{-b^T \Sigma_b^{-1} b/2} \mathrm{d}b \right) \right\} \]

The first term on the right side of (A.7) diverges to $-\infty$ as $\hat{H}_n(t) \rightarrow -\infty$. The second term is negative as n is large due to the choice of s_1. By the selection of $s_p, p = 1, \ldots, N$, the third term cannot diverge to $+\infty$. Finally, the fourth term is bounded because of the Glivenko–Cantelli theorem. Hence the right side of (A.7) diverges to $-\infty$. This contradicts the fact that the left side of (A.6) is nonnegative.
Thus,
\[
\exp \left\{ \sum_{j=1}^{k} X_{ij}^T \beta + \frac{(\sum_{j=1}^{k} Z_{ij})^T \Sigma (\sum_{j=1}^{k} Z_{ij})}{2} \right\} H^{(0)} (0) ^k
\]
\[
= \exp \left\{ \sum_{j=1}^{k} X_{ij}^T \beta_0 + \frac{(\sum_{j=1}^{k} Z_{ij})^T \Sigma_0 (\sum_{j=1}^{k} Z_{ij})}{2} \right\} H_0 ^{(0)} (0) ^k.
\]
(A.11)

Condition C4 implies that \(H^{(0)} (0) > 0 \). Note that the index set \(\{1, \ldots, k\} \) in (A.11) can be replaced by any subset of \(\{1, \ldots, n_i\} \). Thus, it is easy to derive from (A.11) that
\[
Z_{ij}' \Sigma' Z_{ij} = Z_{ij}' \Sigma_0 Z_{ij}, \quad j \neq j'; \ j, j' = 1, \ldots, n_i,
\]
and
\[
X_{ij}' \beta^* + \frac{Z_{ij}' \Sigma Z_{ij}}{2} + \log H^{(0)} (0)
\]
\[
= X_{ij}' \beta_0 + \frac{Z_{ij}' \Sigma_0 Z_{ij}}{2} + \log H_0 ^{(0)} (0), \quad j = 1, \ldots, n_i.
\]

According to condition C3, \(\Sigma^* = \Sigma_0, \beta^* = \beta_0 \), and \(H^{(0)} (0) = H_0 ^{(0)} (0) \).

To show that \(H = H_0 \), we let \(\Delta_{ij} = 1 \) in (A.10) and integrate \(Y_{ij} \) from 0 to \(\tau \); we also perform the following action on the \(j \)th term on both sides of (A.10) for \(j = 2, \ldots, n_i \). If \(\Delta_{ij} = 0 \), then we replace \(Y_{ij} \) with \(\tau \); if \(\Delta_{ij} = 1 \), then we integrate \(Y_{ij} \) from 0 to \(\tau \). Then we sum the resulting equalities over all possible \(\{ \Delta_{ij}: j = 2, \ldots, n_i\} \) to yield
\[
\int_0 ^n \left\{ \frac{H^*(y) e^{X_{ij}' \beta + Z_{ij}' Z_{ij}}}{H^*(y) e^{X_{ij}' \beta_0 + Z_{ij}' Z_{ij}} + 1} \right\} \left\{ \frac{\Sigma_0^{-1} e^{-\beta'^* Y_{ij}/2} dB}{\Sigma^{-1} e^{-\beta Y_{ij}/2} dB} \right\} dB
\]
\[
= \int_0 ^n \left\{ \frac{H_0 (y) e^{X_{ij}' \beta_0 + Z_{ij}' Z_{ij}}}{H_0 (y) e^{X_{ij}' \beta_0 + Z_{ij}' Z_{ij}} + 1} \right\} \left\{ \frac{\Sigma_0^{-1} e^{-\beta'^* Y_{ij}/2} dB}{\Sigma^{-1} e^{-\beta Y_{ij}/2} dB} \right\} dB.
\]

Because the two sides of the foregoing equation are strictly monotone in \(H^*(y) \) and \(H_0 (y) \), we have \(H^*(y) = H_0 (y) \).

Combining the results from Steps 1 and 2, we conclude that, almost surely, \(\beta_n - \beta_0 \rightarrow 0 \), \(\Sigma_n - \Sigma_0 \rightarrow 0 \), and \(\bar{H}_n (y) - H_0 (y) \rightarrow 0 \). The uniform convergence of \(\bar{H}_n \) to \(H_0 \) follows from the fact that \(H_0 \) is a continuous function.

A.2 Proof of Theorem 2

Consider the set
\(\mathcal{H} = \{h_1, h_2, h_3: h_1 \in R^{d_1}, h_2 \in R^{d_2 (d_2 + 1)/2}, \}
\]
\(h_3() \) is a function on \([0, \tau] \); \(h_1 \leq 1, h_2 \leq 1, \| h_3 \|_V \leq 1 \),
\(\| h_3 \|_V \) denotes the total variation of \(h_3() \) in \([0, \tau] \). We define a sequence of maps \(S_n \) mapping a neighborhood of \((\beta_0, \Sigma_0, H_0) \), denoted by \(\mathcal{U} \), in the parameter space for \((\beta, \Sigma, H) \) into \(\mathcal{C}_N (\mathcal{H}) \) (i.e., the space consisting of bounded functions on \(\mathcal{H} \) as:
\[
S_n (\beta, \Sigma, H) [h_1, h_2, h_3]
\]
\[
= \int_0 ^{h_3 (h_1)} \frac{d}{d h} \left(\begin{array}{c} \beta + c h_1, \Sigma + c h_2, H (t) + e \int_t ^{h_3 (h_1)} s d H (s) \end{array} \right) |_{c = 0}
\]
\[
= A_{n1} [h_1] + A_{n2} [h_2] + A_{n3} [h_3],
\]
where \(A_{n p}, p = 1, 2, 3 \), are linear functionals on \(R^{d_1}, R^{d_2 (d_2 + 1)/2}, \) and \(BV[0, \tau] \) and \(BV[0, \tau] \) is the space of functions with finite total variation in \([0, \tau] \). In fact, if we let \(I_g, I_\Sigma, \) and \(I_{h_3} [h_3] \) be the score function for \(\beta \), the score function for \(\Sigma \), and the score for \(H \) along the path \(H (t) + e \int_0 ^{h_3 (h_1)} s d H (s) \) for a single cluster, then
\[
A_{n1} [h_1] = P_n [h_1'^T \beta], \quad A_{n2} [h_2] = P_n [h_2'^T \Sigma],
\]
and
\[
A_{n3} [h_3] = P_n [h_3'^T h_3],
\]
where \(P_n \) denotes the empirical measure based on \(n \) independent clusters.

We can explicitly write the functionals \(A_{np}, p = 1, 2, 3, \) as follows. Define the operation \(\cdot \) between two matrices \(M_1 \) and \(M_2 \) of the same size as the trace of \((M_1 M_2^T) \), and for each \(h_2 \in R^{d_2 (d_2 + 1)/2} \), let \(D (h_2) \) be the symmetric matrix such that the extended vector taken from \(D (h_2) \) is the same as \(h_2 \). Then
\[
A_{n1} [h_1] = n^{-1} \sum_{i=1} ^n \left\{ \int h_1 (\beta, H, h) \right\}
\]
\[
= \sum_{i=1} ^n X_{ij}' h_1 \left[\frac{1 + \Delta_{ij}}{1 + H(Y_{ij}) e^{X_{ij}' \beta + Z_{ij}' b} - 1} \right]
\]
\[
\times e^{-b'^T \Sigma - b'/2} dB
\]
\[
= \left(\int h_1 (\beta, H, h) e^{-b'^T \Sigma - b'/2} dB \right)^{-1}
\]
\[
A_{n2} [h_2] = n^{-1} \sum_{i=1} ^n \left\{ \int h_2 (\beta, H, h) \right\}
\]
\[
\times e^{-b'^T \Sigma - b'/2} \left\{ b'^T \Sigma^{-1} D (h_2) \Sigma^{-1} b/2 \right\} dB
\]
\[
\times \left(\frac{1}{b} \int h_2 (\beta, H, h) e^{-b'^T \Sigma - b'/2} dB \right)^{-1},
\]
and
\[
A_{n3} [h_3] = n^{-1} \sum_{i=1} ^n \left\{ \int h_3 (Y_{ij}) \right\}
\]
\[
\times (1 + \Delta_{ij}) \int_0 ^{h_3 (Y_{ij})} d H (y)
\]
\[
\times \left(\int h_3 (\beta, H, h) \right) e^{-b'^T \Sigma - b'/2} dB
\]
\[
\times \left(\frac{1}{b} \int h_3 (\beta, H, h) e^{-b'^T \Sigma - b'/2} dB \right)^{-1}
\]
Correspondingly, we define the limit map \(S: (\beta, \Sigma, H) \rightarrow \mathcal{C}_N (\mathcal{H}) \) as
\[
S (\beta, \Sigma, H) [h_1, h_2, h_3] = A_{n1} [h_1] + A_{n2} [h_2] + A_{n3} [h_3],
\]
where the linear functionals \(A_{np}, p = 1, 2, 3, \) are obtained by replacing the empirical sum in the \(A_{np} \) by the expectation. Clearly, \(S_n (\beta_n, \Sigma_n, \bar{H}_n) = 0 \) and \(S (\beta_0, \Sigma_0, H_0) = 0 \).

The desired asymptotic normality will follow if we can verify the four conditions stated in theorem 2 of Murphy (1995). The first condition, \(\sqrt{n} (S_n (\beta_0, \Sigma_0, H_0) - S (\beta_0, \Sigma_0, H_0)) \) weakly converges to a tight Gaussian process on \(\mathcal{C}_N (\mathcal{H}) \), holds because \(\mathcal{H} \) is a Donsker class and the functionals \(A_{np} \) are bounded Lipschitz functions with respect to \(\mathcal{H} \). By the smoothness of \(S (\beta, \Sigma, H) \), the Fréchet differentiability holds and the derivative of \(S (\beta, \Sigma, H) \) at \((\beta_0, \Sigma_0, H_0) \), denoted
by \(\hat{S}(\beta_0, \Sigma_0, H_0)\), is a map from the space
\[\{ (\beta - \beta_0, \Sigma - \Sigma_0, H - H_0) : (\beta, \Sigma, H) \text{ is in the neighborhood } \mathcal{U} \text{ of } (\beta_0, \Sigma_0, H_0) \}\]
to \(I^{\infty}(\mathcal{H})\). The approximation condition that
\[
sup_{(h_1, h_2, h_3) \in \mathcal{H}} \left| (S_n - \hat{S}(\hat{\beta}_n, \hat{\Sigma}_n, \hat{H}_n)[h_1, h_2, h_3] - (S_n - \hat{S}(\beta_0, \Sigma_0, H_0))[h_1, h_2, h_3] \right|
\]
\[
= o_p \left(n^{-1/2} \sum_{y \in [0,1]} \left(\| \hat{\beta}_n - \beta_0 \| + \| \hat{\Sigma}_n - \Sigma_0 \| + \sup_{y \in [0,1]} \| \hat{H}_n(y) - H_0(y) \| \right) \right)
\]
can be verified along the lines of Murphy (1995, app.).

It remains to show that the linear map \(\hat{S}(\beta_0, \Sigma_0, H_0)\), denoted by \(\Lambda\), is continuously invertible on its range. Note that \(\Lambda\) maps \((\beta - \beta_0, \Sigma - \Sigma_0, H - H_0)\) to a bounded functional on \(\mathcal{H}\). Algebraic manipulations yield
\[
\Lambda(\beta - \beta_0, \Sigma - \Sigma_0, H - H_0)[h_1, h_2, h_3] = (\beta - \beta_0)^T Q_1(h_1, h_2, h_3) + (\Sigma - \Sigma_0)^T Q_2(h_1, h_2, h_3)
\]
\[
+ \int_0^\tau Q_3(h_1, h_2, h_3) \, d(H - H_0),
\]
where
\[
Q_1(h_1, h_2, h_3) = B_1 \left(\begin{array}{c} h_1 \\ h_2 \end{array} \right) + \int_0^\tau h_3(y) D_1(y) \, dy,
\]
\[
Q_2(h_1, h_2, h_3) = B_2 \left(\begin{array}{c} h_1 \\ h_2 \end{array} \right) + \int_0^\tau h_3(y) D_2(y) \, dy,
\]
and
\[
Q_3(h_1, h_2, h_3) = B_3 \left(\begin{array}{c} h_1 \\ h_2 \end{array} \right) + \int_0^\tau h_3(t) D_3(t, y) \, dt.
\]

\(B_1, B_2\) and \(B_3\) are constant matrices; \(D_1(y), D_2(y), D_3(t, y)\) are continuously differentiable functions depending on the true densities; and \(h_3 > 0\). Thus the operator \(Q(h_1, h_2, h_3) \equiv (Q_1(h_1, h_2, h_3), Q_2(h_1, h_2, h_3), Q_3(h_1, h_2, h_3))^T\) can be considered a sum of a continuously invertible linear operator and a compact operator from the linear span of \(\mathcal{H}\) to itself.

The invertibility of \(\Lambda \equiv \hat{S}(\beta_0, \Sigma_0, H_0)\) is equivalent to the invertibility of the linear operator \(Q(h_1, h_2, h_3)\). It suffices to prove that \(Q(h_1, h_2, h_3)\) is a one-to-one map (Rudin 1973, pp. 99-103). If \(Q(h_1, h_2, h_3) = 0\), then \(\Lambda(\beta - \beta_0, \Sigma - \Sigma_0, H - H_0)[h_1, h_2, h_3] = 0\) for any \((\beta, \Sigma, H)\) in the neighborhood \(\mathcal{U}\). In particular, we choose
\[
\beta = \beta_0 + \epsilon h_1, \quad \Sigma = \Sigma_0 + \epsilon h_2, \quad H(y) = H_0(y) + \epsilon \int_0^\tau h_3(t) \, dH_0(t)
\]
for a small constant \(\epsilon\). By the definition of \(\Lambda\),
\[
0 = \Lambda(\beta - \beta_0, \Sigma - \Sigma_0, H - H_0)[h_1, h_2, h_3] = \epsilon \epsilon \left(\| \beta_1 h_1 \| + \| \Sigma_2 h_2 \| + H_1(h_3) \right)
\]
Thus \(\epsilon \beta_1 h_1 + \epsilon \Sigma_2 h_2 + H_1(h_3) = 0\) almost surely. Writing out the expression of this equation, we obtain
\[
\sum_{j=1}^n \left[R_{d_4}(\beta_0, H_0, b) \right] X_j \left(\begin{array}{c} -1 + \frac{(1 + \Delta_{ij})}{(H_0(Y_{ij})e^{\Sigma_0^T \mathbf{b} + \mathbf{Z}_m^T \mathbf{b}} + 1)} \end{array} \right) \right] d_{b}N(0, \Sigma_0)
\]
\[
\times \left[X_j^T h_1 \left(\begin{array}{c} -1 + \frac{(1 + \Delta_{ij})}{(H_0(Y_{ij})e^{\Sigma_0^T \mathbf{b} + \mathbf{Z}_m^T \mathbf{b}} + 1)} \end{array} \right) \right] d_{b}N(0, \Sigma_0)
\]
\[
= \int_{\mathbb{R}^n} \left[X_j^T h_1 \left(\begin{array}{c} -1 + \frac{(1 + \Delta_{ij})}{(H_0(Y_{ij})e^{\Sigma_0^T \mathbf{b} + \mathbf{Z}_m^T \mathbf{b}} + 1)} \end{array} \right) \right] \, dB_N(0, \Sigma_0)
\]
\[
+ \left\{ \frac{-\frac{1}{2} \Sigma_0^{-1} \cdot D(h_2)}{\Sigma_0^{-1} \cdot D(h_3)} \right\} d_{b}N(0, \Sigma_0)
\]
\[
+ \sum_{j=1}^n R_{d_4}(\beta_0, H_0, b) d_{b}N(0, \Sigma_0)
\]
where
\[
R_{d_4}(\beta, H, b) = R_{d_4}(\beta, H, b) \prod_{i=1}^{m_{ij}} (H_0(Y_{ij}))^{\Delta_{ij}}
\]
Thus, \(R_{d_4}(\beta_0, H_0, b) = R_{d_4}(\beta_0, H_0, b) \prod_{i=1}^{m_{ij}} (H_0(Y_{ij}))^{\Delta_{ij}}\).
Furthermore, if \(j \leq k \), then
\[
\int \Delta_j h_3(Y_j) \frac{(1 + \Delta_j) \int_{0}^{Y_j} h_3(y) \, dh_0(y)}{H_0(Y_j) + e^{-\left(X_j^T \beta_0 + Z_j^T \mu_0 \right)}} \, d\left(\prod_{m=1}^{n} \mu_m \right)
\]
\[
= h_3(0) \prod_{m \leq k} \left\{ H_0^0(0) e^{X_m^T \beta_0 + Z_m^T \mu_0} \right\}.
\]

If \(j > k \), then
\[
\int \Delta_j h_3(Y_j) \frac{(1 + \Delta_j) \int_{0}^{Y_j} h_3(y) \, dh_0(y)}{H_0(Y_j) + e^{-\left(X_j^T \beta_0 + Z_j^T \mu_0 \right)}} \, d\left(\prod_{m=1}^{n} \mu_m \right)
\]
\[
= \prod_{m \leq k} \left\{ H_0^0(0) e^{X_m^T \beta_0 + Z_m^T \mu_0} \right\}
\]
\[
\times \left[\sum_{\delta_j \in \{0,1\}} \left\{ 1 \right\} \right] \frac{(1 - \delta_j)}{H_0(Y_j) e^{\left(X_j^T \beta_0 + Z_j^T \mu_0 \right)}} \left(H_0(Y_j) + e^{-\left(X_j^T \beta_0 + Z_j^T \mu_0 \right)} \right)
\]
\[
\times \left[\sum_{\delta_j \in \{0,1\}} \left\{ 1 \right\} \right] \frac{(1 - \delta_j)}{H_0(Y_j) e^{\left(X_j^T \beta_0 + Z_j^T \mu_0 \right)}} \left(H_0(Y_j) + e^{-\left(X_j^T \beta_0 + Z_j^T \mu_0 \right)} \right)
\]
\[
= 0.
\]

Therefore,
\[
\int \sum_{j=1}^{n_j} \int_{b} R_{ij}(\beta_0, H_0, b) \, db \, d\left(\prod_{m=1}^{n} \mu_m \right)
\]
\[
= \sum_{j \leq k} \int_{b} \prod_{m \leq k} \left\{ H_0^0(0) e^{X_m^T \beta_0 + Z_m^T \mu_0} \right\} \, db \, d\left(\prod_{m=1}^{n} \mu_m \right) \quad \text{(A.13)}
\]

Likewise,
\[
\int \int_{b} \left\{ -\frac{1}{2} \Sigma^{-1} \cdot D(h_2) + \frac{1}{2} b^T \Sigma^{-1} \cdot D(h_2) \Sigma^{-1} b \right\} \, db \, d\left(\prod_{m=1}^{n} \mu_m \right)
\]
\[
= \int_{b} \left\{ -\frac{1}{2} \Sigma^{-1} \cdot D(h_2) + \frac{1}{2} b^T \Sigma^{-1} \cdot D(h_2) \Sigma^{-1} b \right\} \, db \, d\left(\prod_{m=1}^{n} \mu_m \right) \quad \text{(A.14)}
\]

Because the order for the subscripts \(j = 1, \ldots, k \) is arbitrary, it holds that
\[
\sum_{j=k+1}^{k_2} \int_{b} \frac{1}{2} b^T \Sigma^{-1} \cdot D(h_2) b \, db + \frac{1}{2} \Sigma \Sigma^{-1} \cdot D(h_2) \Sigma^{-1} b
\]
\[
= \sum_{j=k+1}^{k_2} \int_{b} \frac{1}{2} b^T \Sigma^{-1} \cdot D(h_2) b + \frac{1}{2} \Sigma \Sigma^{-1} \cdot D(h_2) \Sigma^{-1} b
\]
\[
\times D(h_2) \left(\sum_{j=k+1}^{k_2} \Sigma \right) + \frac{1}{2} \Sigma \Sigma^{-1} \cdot D(h_2) \Sigma^{-1} b
\]
\[
= 0.
\]

for any \(1 \leq k_1 < k_2 < n_i \). Thus \(Z_j^T \cdot D(h_2) Z_j = 0 \) for \(j \neq j' \) and \(X_j^T h_1 + Z_j^T D(h_2) Z_j / 2 + h_3(0) = 0 \). By condition C3, \(D(h_2) = 0 \). As a result,
That is, \(g(0) = 0\) and \(h_1 = h_2 = 0\). In (A.13), we set \(Y_{ij} = 0, j = 2, \ldots, n_i\), and \(\Delta_{ij} = 1, j = 1, \ldots, n_i\), so as to obtain

\[
h_3(Y_{ij}) = 2 \int_0^{Y_{ij}} h_3(y) \, dh_{0}(y)
\]

\[
\times \frac{h_b(-X_{ij}^T \beta_0 + Z_{ij}^T \beta_b) + \sum_{j=2}^{n_i} (-X_{ij}^T \beta_0 + Z_{ij}^T \beta_b)}{H_0(Y_{ij}) + e^{-(X_{ij}^T \beta_0 + Z_{ij}^T \beta_b)}} \, db
\]

\[
\times \left(\frac{h_b(-X_{ij}^T \beta_0 + Z_{ij}^T \beta_b) + \sum_{j=2}^{n_i} (-X_{ij}^T \beta_0 + Z_{ij}^T \beta_b)}{H_0(Y_{ij}) + e^{-(X_{ij}^T \beta_0 + Z_{ij}^T \beta_b)}} \right)^2 \, db.
\]

That is, \(g(0) = 0\) and \(h_1 = h_2 = 0\). Hence we have verified that \(Q\) is one-to-one map and thus have shown the invertibility of \(S(\beta_0, \Sigma_0, H_0)\).

The asymptotic distribution stated in theorem 2 now follows from theorem 2 of Murphy (1995). Furthermore,

\[
\sqrt{n}(\beta_n - \beta_0, \Sigma_n - \Sigma_0, H_n - H_0)[v(1, 2, 3)] = \sqrt{n}(\beta_n - \beta_0) \Rightarrow^d Q_1(h) + \sqrt{n}(\Sigma_n - \Sigma_0) \Rightarrow^d Q_2(h)
\]

\[
+ \int \sqrt{n}(Q_3(h) \, d(H_n - H_0) = \sqrt{n}(P_n - P)[h_1^T \beta_n + h_2^T \Sigma_n + l_H(h_1)] + o_p(1) \tag{A.16}
\]

uniformly in \(h_1, h_2, h_3\), where \(h = (h_1, h_2, h_3)\). Thus \(Q_1 \equiv (Q_1, Q_2, Q_3)\) is invertible. We can find \(N = d_1 + d_2(2d + 1)/2\) unique directions \(\omega_1 \equiv (\omega_{11}, \omega_{12}, \omega_{13}), \ldots, \omega_N \equiv (\omega_{N1}, \omega_{N2}, \omega_{N3}) \in \mathcal{H}\) such that

\[
(\beta_n - \beta_0)^T (Q_1(\omega_1), \ldots, Q_1(\omega_N))
\]

\[
+ (\Sigma_n - \Sigma_0)^T (Q_2(\omega_1), \ldots, Q_2(\omega_N))
\]

\[
+ \int \sqrt{n}(Q_3(\omega_1), \ldots, Q_3(\omega_N)) \, d(H_n - H_0)
\]

\[
= ((\beta_n - \beta_0)^T, (\Sigma_n - \Sigma_0)^T).
\]

For such \(\omega\),

\[
\sqrt{n}(\beta_n - \beta_0)^T (\Sigma_n - \Sigma_0)^T
\]

\[
= \sqrt{n}(P_n - P)(\omega_1^T \beta_0 + \omega_2^T \Sigma + l_H(\omega_1)) + o_p(1).
\]

Thus \(\beta_n, \Sigma_n\) are asymptotically linear estimators for \(\beta_0, \Sigma_0\) and their influence functions belong to the space spanned by the score functions. It follows that \((\beta_n, \Sigma_n)\) are semiparametrically efficient (Bickel et al. 1993, chap. 3).

A.3 Proof of Theorem 3

The proof of Theorem 3 parallels the proof of theorem 3 of Parner (1998), and thus we keep it brief. The left side of (A.16) is equal to \(\sqrt{n}\) times the expectation of the second derivative of the log-likelihood function along the directions \((\beta_n - \beta_0, \Sigma_n - \Sigma_0, H_n - H_0)\) and the direction \((h_1, h_2, h_3)^T, h_b^T dh_b\). This second derivative can be approximated uniformly in \((h_1, h_2, h_3)^T, h_b^T dh_b\) by

\[
(h_1^T, h_2^T, h_3^T) \,(J_n/n) \begin{pmatrix}
\tilde{\beta}_n - \beta_0 \\
\tilde{\Sigma}_n - \Sigma_0 \\
[H_n - H_0(\tilde{Y}_{ij}) - \delta H_0(Y_{ij})]/\Delta_{ij} = 1
\end{pmatrix}
\]

where \(\tilde{h}_b\) denotes the vector of \((h(Y_{ij}) : \Delta_{ij} = 1)\) and \(\delta H_0(Y_{ij}) = H_0(Y_{ij}) - \max_{Y_{ij} < Y}(H_0(Y_{ij}))\). On the other hand, for large \(n\), the distribution of the right side of (A.14) approximates \((h_1^T, h_2^T, h_3^T) \,(J_n/n)^{1/2} G\), where \(G\) is standard multivariate normal. It follows that

\[
\sqrt{n}(h_1^T, h_2^T, h_3^T) \,(J_n/n)^{-1} \Rightarrow^d (h_1^T, h_2^T, h_3^T) \,(J_n/n)^{-1/2} G.
\]

Thus \(\sqrt{n}(\beta_n - \beta_0)^T h_1 + \sqrt{n}(\Sigma_n - \Sigma_0)^T h_2 + \int_0^1 h_3(t) \, d(H_n(t) - H_0(t))\) converges to a 0-mean normal distribution whose variance is the limit of \(n(h_1^T, h_2^T, h_3^T) \,(J_n/n)^{-1} (h_1^T, h_2^T, h_3^T)\). Hence the conclusion of Theorem 3 holds.

{[Received July 2003. Revised July 2004.]}

